If it's not what You are looking for type in the equation solver your own equation and let us solve it.
55-16x^2=0
a = -16; b = 0; c = +55;
Δ = b2-4ac
Δ = 02-4·(-16)·55
Δ = 3520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3520}=\sqrt{64*55}=\sqrt{64}*\sqrt{55}=8\sqrt{55}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{55}}{2*-16}=\frac{0-8\sqrt{55}}{-32} =-\frac{8\sqrt{55}}{-32} =-\frac{\sqrt{55}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{55}}{2*-16}=\frac{0+8\sqrt{55}}{-32} =\frac{8\sqrt{55}}{-32} =\frac{\sqrt{55}}{-4} $
| 1,5n+3=31,5 | | 16k-24=6k-13 | | 58-3x=1 | | 10{0.4+0.5g}=4g | | 88=8(p=7) | | n-2+78=5n | | 7+9x=-2(3x-5) | | 18+.5x=1/4x+54 | | 32-2x=8 | | 2=f/4-3 | | 4n+0.12=6n+0.2 | | 20-8x=-12 | | 4n=2004 | | 700-9.5x=4.65 | | -4=t+2•16 | | 6x+-16=4 | | y/4+3=-13 | | -n+15=-87 | | -3y=1/6 | | 6=24-9x | | (y+2)/1=3.1 | | 2(x-6)+3x=5x+6 | | 1/2+18=1/4x+54 | | 1/3x-3/21/2=4/5 | | 12-a=6 | | 936=9(t-831) | | 4=31.7-3x | | 1/2=r+7/12 | | 1/2+18=x | | 2x/3+9=1/2 | | 6=4.9t^2 | | 4x=2x+2x+5x(x-x) |